Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA. 2007;298:902–16.
Bresnick GH, De Venecia G, Myers FL, Harris JA, Davis MD. Retinal ischemia in diabetic retinopathy. Arch Ophthalmol. 1975;93:1300–10.
Rajagopal J, Kamath AG, Kamath GG, Solanki N. Foveal neovascularisation in diabetic retinopathy: case report and review of literature. Int Ophthalmol. 2010;30:311–4.
Andreanos K, Rotsos T, Kymionis G, Koutsandrea C, Kotsolis A, Ladas I. Optical coherence tomography angiography of foveal neovascularization in diabetic retinopathy. Case Rep Ophthalmol. 2018;9:93–7.
Murakawa S, Hasegawa T, Koizumi H, Maruko I, Iida T. Foveal retinal neovascularization in proliferative diabetic retinopathy: assessment by optical coherence tomography angiography. Retina. 2017;37:e135–e7.
Kurz PA, Nguyan H, Cooney MJ. Bilateral foveal neovascularization in a patient with insulin-dependent diabetes mellitus. Arch Ophthalmol. 2003;121:1656–7.
Vaz-Pereira S, Proença H. Foveal neovascularization in type 2 diabetes. Ophthalmol Retin. 2019;3:566.
Seth A, Ghosh B, Bhambhwani V, Gupta A, Raina U. Foveal neovascularization in a patient with type 2 diabetes mellitus. Oman J Ophthalmol. 2017;10:255–6.
Tan B, Lim N-A, Tan R, Gan ATL, Chua J, Nusinovici S, et al. Combining retinal and choroidal microvascular metrics improves discriminative power for diabetic retinopathy. Br J Ophthalmol. 2023;107:993–9.
Venkatesh R, Reddy NG, Jayadev C, Mutalik D, Agrawal S, Mishra P, et al. Contributory factors for developing foveal neovascularization in proliferative diabetic retinopathy. Eur J Ophthalmol. 2022;32:3615–21.
Fawzi AA, Fayed AE, Linsenmeier RA, Gao J, Yu F. Improved macular capillary flow on optical coherence tomography angiography after panretinal photocoagulation for proliferative diabetic retinopathy. Am J Ophthalmol. 2019;206:217–27.
Fayed AE, Abdelbaki AM, El Zawahry OM, Fawzi AA. Optical coherence tomography angiography reveals progressive worsening of retinal vascular geometry in diabetic retinopathy and improved geometry after panretinal photocoagulation. PLoS One. 2020;14:e0226629.
Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20:4710–25.
Fayed AE, Menten MJ, Kreitner L, Paetzold JC, Rueckert D, Bassily SM, et al. Retinal vasculature of different diameters and plexuses exhibit distinct vulnerability in varying severity of diabetic retinopathy. Eye. 2024:1-8.
Fayed AE, Gerges TK Optical coherence tomography angiography reveals paradoxically decreasing choroidal thickness & increasing blood flow in remitting Vogt Koyanagi Harada syndrome. Retina. 2022:10-1097.
Wilkinson C, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–82.
Campbell J, Zhang M, Hwang T, Bailey S, Wilson D, Jia Y, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep 2017;7:42201.
Ashraf M, Nesper PL, Jampol LM, Yu F, Fawzi AA. Statistical model of optical coherence tomography angiography parameters that correlate with severity of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2018;59:4292–8.
Rasband WS Imagej, us national institutes of health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij. 2011.
Cai J, Boulton M. The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye. 2002;16:242–60.
Stitt A, Gardiner T, Archer D. Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients. Br J Ophthalmol. 1995;79:362–7.
Jian B, Jones PL, Li Q, Mohler ER III, Schoen FJ, et al. Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am J Ophthalmol. 2001;159:321–7.
CAS Google Scholar
Haimovich B, Lipfert L, Brugge J, Shattil S. Tyrosine phosphorylation and cytoskeletal reorganization in platelets are triggered by interaction of integrin receptors with their immobilized ligands. J Biol Chem. 1993;268:15868–77.
Yanoff M. Ocular pathology of diabetes mellitus. Am J Ophthalmol. 1969;67:21–38.
Hidayat AA, Fine BS. Diabetic choroidopathy: light and electron microscopic observations of seven cases. Ophthalmology. 1985;92:512–22.
Shiragami C, Shiraga F, Matsuo T, Tsuchida Y, Ohtsuki H. Risk factors for diabetic choroidopathy in patients with diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2002;240:436–42.
Borrelli E, Palmieri M, Viggiano P, Ferro G, Mastropasqua R. Photoreceptor damage in diabetic choroidopathy. Retina. 2020;40:1062–9.
Tang F, Luenam P, Ran AR, Quadeer AA, Raman R, Sen P, et al. Detection of diabetic retinopathy from ultra-widefield scanning laser ophthalmoscope images: a multicenter deep learning analysis. Ophthalmol Retin. 2021;5:1097–106.
Hayreh SS. Posterior ciliary artery circulation in health and disease the Weisenfeld lecture. Invest Ophthalmol Vis Sci. 2004;45:749–57.
Okamoto M, Matsuura T, Ogata N. Effects of panretinal photocoagulation on choroidal thickness and choroidal blood flow in patients with severe nonproliferative diabetic retinopathy. Retina. 2016;36:805–11.
Yiu G, Manjunath V, Chiu SJ, Farsiu S, Mahmoud TH. Effect of anti–vascular endothelial growth factor therapy on choroidal thickness in diabetic macular edema. Am J Ophthalmol. 2014;158:745–51.e2.
Iglicki M, González DP, Loewenstein A, Zur D. Next-generation anti-VEGF agents for diabetic macular oedema. Eye. 2022;36:273–7.